Management of acute myocarditis in children

Quratulain Merchant,1 Anwarul Haque,2 Babar Sultan Hasan3

Abstract
Myocarditis is defined as the inflammation of the myocardium. It continues to be a significant cause of morbidity and mortality in the paediatric population and is the commonest cause of cardiac failure in a healthy child. Some studies estimate the incidence of myocarditis to be around 1 per 100,000. PubMed search was performed using the term ‘myocarditis.’ The search was limited to age 0-19 years. A total of 50 articles were identified between 1966 to date and reviewed. Myocarditis is a challenging diagnosis to make on clinical grounds and requires high index of suspicion. The cornerstone of treatment remains supportive though therapeutic modalities such as immunosuppressive and intravenous immunoglobulin therapies are being studied extensively. The overall prognosis of the disease is good with survival rates up to 80%.

Keywords: Myocarditis, Paediatric population, PubMed.

Introduction

Myocarditis, or inflammatory cardiac myopathy, is defined as the inflammation of the myocardium in association with myocellular necrosis and degeneration.1 It can either be focal or diffuse and can lead to cardiac dysfunction. Myocarditis continues to be a significant cause of morbidity and mortality in the paediatric population and is the commonest cause of cardiac failure in a healthy child.2 Sub-clinical presentation of the disease leading to under-diagnosis makes it difficult to determine the true incidence of myocarditis. However, it accounts for 12% of sudden cardiac deaths in adolescents and young adults.3

The clinical presentation of myocarditis has a broad spectrum of signs and symptoms as it varies from asymptomatic cases to complete cardiovascular collapse (referred to as acute fulminant myocarditis).4 The main causative agent is a virus, Coxsackie type B virus being the most common, but it can also be due to bacterial infections, immune-mediated and toxic/hypersensitivity reactions.2,3

Table 1: Causative agents of myocarditis in children.

<table>
<thead>
<tr>
<th>Infectious</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses</td>
<td>Immune-mediated</td>
</tr>
<tr>
<td>Coxsackie B</td>
<td>SLE (Systemic Lupus Erythematosus)</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Rheumatic fever</td>
</tr>
<tr>
<td>Echovirus</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td>virus</td>
<td>Sarcoïdosis</td>
</tr>
<tr>
<td>Herpes</td>
<td>Churg-Strauss syndrome</td>
</tr>
<tr>
<td>simplex</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>virus</td>
<td>Thyrotoxicosis</td>
</tr>
<tr>
<td>Epstein Bar</td>
<td>Wegener's disease</td>
</tr>
<tr>
<td>Parvovirus</td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td></td>
</tr>
<tr>
<td>virus</td>
<td></td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td></td>
</tr>
<tr>
<td>Mumps</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
</tr>
<tr>
<td>Streptococcus</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma bacteria</td>
<td></td>
</tr>
<tr>
<td>Legionella</td>
<td></td>
</tr>
<tr>
<td>Treponema pallidum</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium species</td>
<td></td>
</tr>
<tr>
<td>Rickettsial</td>
<td></td>
</tr>
<tr>
<td>Rickettsia rickettsii</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td></td>
</tr>
<tr>
<td>Histoplasma</td>
<td></td>
</tr>
<tr>
<td>Cryptococcus</td>
<td></td>
</tr>
<tr>
<td>Protozoal/Parasites</td>
<td></td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
</tr>
<tr>
<td>Toxocara canis</td>
<td></td>
</tr>
</tbody>
</table>

1Medical Student, Aga Khan University Medical College, 2,3Department of Paediatrics and Child Heath, Aga Khan University, Karachi, Pakistan.

Correspondence: Babar Sultan Hasan. Email: babar.hasan@aku.edu
in the paediatric population are caused by viral infections like Adenovirus, Epstein-Barr virus and, most importantly, Coxsackie virus type B. However, with the advent of newer diagnostic modalities, including polymerase chain reaction (PCR) and EMB, Parvovirus B19 and Human Herpes Virus 6 were also detected in a number of patients with biopsy-proven myocarditis in European studies. Although myocarditis is a very common cardiac pathological autopsy finding in adult patients diagnosed with human immunodeficiency virus (HIV) (up to 50-70% of the cases), it remains uncommon among HIV-infected children. In these patients, cytomegalovirus and adenovirus are found in histologically-proven myocarditis, raising the question whether HIV or secondary viruses are the culprits behind high incidence of myocarditis in an immunocompromised host. Moreover, in the developing world, mumps, poliomyelitis and rubella may be the other contributing organisms leading to the development of myocarditis, especially in unvaccinated children.

Pathogenesis

The progression of myocarditis, as demonstrated by Murine models, can be divided into three recognised phases: an acute phase caused by direct cellular damage by the infectious agent; a sub-acute phase which involves innate host immune response against virus infested cells; and chronic phase which leads to DCM.

The acute phase is characterised by direct myocardial invasion by cardiotropic viruses via receptor-mediated endocytosis and rapid viral replication, leading to myocardial necrosis and apoptosis. A specific Coxsackie virus-Adenovirus Receptor (CAR), member of the immunoglobulin superfamily, appears to mediate this attachment in cases of viral myocarditis caused by Coxsackie virus and Adenovirus. The expressions of these receptors therefore determine an individual's susceptibility to viral myocarditis. The acute phase lasts only a few days (Figure-1).

The acute phase is followed by rapid progression to host's...
immune cascade, known as the sub-acute phase of the disease. Macrophage activation, due to cardiotropic viruses, leads to production of inflammatory cytokines, interleukin 1β (IL1β), IL2 and tumour necrosis factor-alpha (TNF-α), which cause recruitment of T lymphocytes and natural killer (NK) cells. The T lymphocytes play a pivotal role in this immune cascade by targeting the myocardium by molecular mimicry, causing further myocardial damage. Both cell-mediated immunity and humoral immunity play a role in this phase of the disease. In addition to production of pro-inflammatory cytokines, titres of protective anti-inflammatory cytokines also rise, suggesting interplay between pro- and anti-inflammatory cytokines during this phase of myocarditis. It has also been found that sub-acute phase is the most destructive phase of myocarditis and can last from a few weeks to several months. Decrease in viral load in this phase is associated with recovery of left ventricular (LV) function.

In majority of the cases where insult to myocardium is limited, the heart function recovers within a few months, but in cases with more extensive myocardial insult, chronic myocarditis may develop. This third phase of the disease, the chronic phase, is characterised by myocardial fibrosis and development of DCM. This involves chamber dilation and ventricular wall thinning with impairment of the contractile function of the heart, leading to permanent damage with scar tissue replacing the necrotic myocardium.

Clinical Presentation
The clinical presentation of myocarditis has a broad spectrum of signs and symptoms as it varies from asymptomatic cases to mild lethargy, dysrhythmias, complete cardiovascular collapse and death. Myocarditis can be broadly divided into fulminant, acute and chronic presentation. Fulminant myocarditis is characterised by sudden onset of severe haemodynamic compromise following a viral infection. Though more dramatic in its presentation, if managed aggressively with early mechanical support using extracorporeal membrane oxygenator (ECMO), fulminant myocarditis patients may have full recovery and less risk of developing DCM. Acute myocarditis follows a less distinct onset, initially with less severe compromise, but may lead to worse outcome than fulminant myocarditis, with the development of DCM. D’Ambrosio et al showed that 21% of diagnosed cases of acute myocarditis developed DCM over a mean follow-up of 3 years. Chronic myocarditis can be labelled so if it persists for more than 3 months.

Clinical presentation also varies in different age groups (Table-2). Neonates usually present with non-specific symptoms like fever, irritability, pallor and poor feeding, indicating an infection. However, neonates may also present with ominous signs such as apnoea and episodic cyanosis.

Signs and symptoms of myocarditis are also variable in older children. They may present with non-specific upper respiratory or gastrointestinal symptoms, fever, myalgia, coryza, anorexia and vomiting. Chest pain, due to pericardial irritation, is non-specific and is only reported in minority of the cases. Myocarditis may also present with atypical features such as syncope and seizures and accounts for 12% of sudden cardiac deaths in adolescents and young adults.

Owing to non-specific symptoms in majority of cases, the diagnosis of myocarditis is difficult to make on clinical grounds, leading to missed diagnosis in up to 83% of the cases on the first presentation to a medical provider. Generally, medical practitioners become suspicious of myocarditis when there is tachycardia in an otherwise healthy child without a clearly defined cause i.e. fever or dehydration.

Patients who have developed high degree of cardiac dysfunction and congestive heart failure (CHF), present with signs and symptoms of respiratory distress, diaphoresis, tachycardia, tachypnoea, gallop rhythm, decreased peripheral pulses and hepatomegaly. A gallop rhythm, produced by the third or fourth heart sound is best heard at the apex. The first sign of CHF appreciated in children is eyelid puffiness due to fluid retention.

Differential Diagnosis
Other diseases that can mimic myocarditis are sepsis, dilated cardiomyopathy secondary to metabolic disorders or idiopathic dilated cardiomyopathy or anomalous left coronary artery off the pulmonary artery (ALCAPA).

Diagnostic Modalities
The chest x-ray typically demonstrates cardiomegaly and increased pulmonary vascular markings, indicating pulmonary oedema.

The 12-lead electrocardiogram (ECG) is used widely in the

| Table-2: Clinical presentation of myocarditis in different age groups. |
|-----------------|-----------------|-----------------|
| Neonates | Nonspecific signs: fever, irritability, pallor, poor feeding | Ominous signs: apnoea, episodic cyanosis |
| Young children and adolescents | Nonspecific signs: fever, myalgia, coryza, anorexia, vomiting | Atypical signs: seizures, syncope, sudden cardiac death |

Vol. 63, No. 6, June 2013
diagnosis of myocarditis despite low sensitivity. The most common ECG changes are sinus tachycardia, S-T wave changes, low voltage QRS complexes, axis deviation and ventricular hypertrophy. Infarction patterns, atrial abnormalities and various degrees of heart block may also be seen. The presence of Q waves, a new left bundle branch block and prolonged QRS duration of >120msec is associated with higher rates of cardiac death or heart transplantation and may be used as a prognostic indicator.

Echocardiogram is essential in diagnosis, treatment and follow-up of patients with myocarditis. It does not show any specific features of myocarditis, but helps in ruling out other cardiac abnormalities such as valvular heart disease or other cardiomyopathies (hypertrophic or restrictive cardiomyopathy). Durani et al recently reported that echocardiography will show abnormal findings in 98% of paediatric myocarditis, with segmental wall motion abnormalities being the most common (hypokinesia, akinesia and/or dyskinesia).

Non-specific markers of inflammation, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) have been found to be elevated in 27-56% of cases of paediatric myocarditis. Troponin I and troponin T are cardio-selective markers released in the blood stream, hours following cardiac insult. Cardiac troponin T (cTnT) has been found to be elevated in children with myocarditis. Levels > 0.052 mg/ml have a sensitivity of 71% and specificity of 86% for paediatric myocarditis. Recently, aspartate aminotransferase (AST) was also studied and was found to be a highly sensitive marker for diagnosis of paediatric myocarditis as it was seen to be elevated in 85% cases of definite and probable cases of myocarditis. However, AST levels are non-specific and may be raised in conditions such as Kawasaki syndrome, hypoperfusion and other viral illnesses.

Soongswang et al further assessed the use of serum cTnT and creatinine kinase-muscle and brain levels as non-invasive indicators to differentiate acute myocarditis and chronic DCM in paediatric patients. The two levels were shown to be significantly higher in patients with myocarditis than in patients with DCM.

EMB still remains the gold standard for diagnosis of myocarditis. Specific histopathological features found on microscopic examination of the biopsy specimen in a myocarditis patient are shown in Figure-2A-F. Polymerase chain reaction (PCR) performed on the myocardial tissue has proved to be both sensitive and specific in diagnosing entero- and adenoviral myocarditis. However, EMB is an invasive procedure and can lead to dangerous complications in paediatric population, including pneumothorax, haemothorax, dysrhythmia, heart block, myocardial perforation and death. Moreover, EMB, when used alone, is not sensitive owing to patchy nature of myocardial inflammation.

Cardiac magnetic resonance imaging (CMRI) has recently evolved as a non-invasive and valuable diagnostic modality for myocarditis. CMR, with early and delayed gadolinium enhancement, can often detect the subtle patchy myocardial involvement and can demarcate areas of inflammation. Thus, CMR can help not only in diagnosing myocarditis, but can guide EMB procedure. Vashist at el in his retrospective study concluded that myocarditis in children is characterised by sub-pericardial and transmural enhancement. Transmural myocardial involvement, global hypokinesia, LV dilation, and LV ejection fraction less than 30% were shown to be associated with poor prognosis.

Treatment
The mainstay of treatment in paediatric myocarditis...
Figure 3: Management of myocarditis in emergency department; endomyocardial biopsy and cardiac magnetic resonance imaging not mentioned as not readily available in resource-limited developing world.
Figure-4: Paediatric intensive care unit and ward management of myocarditis.

Respiration
- Continue PPV for 24-48 hours. Wean off as tolerated after 48 hours based on CVS evaluation.
- Switch to BIPAP and then extubate.
- If tolerated, switch to oral medicines after extubation
- Prior to extubation, start Prednisolone 0.5mg/kg dose.

CVS
- Place CVL (preferable IJV, SCV)+ arterial line.
- Follow mixed VO2 Q12 hourly
- Add L-Carnitine 300mg/kg/day for 6 weeks.
- ECHO: Monitor Cardiac functions daily.
- Pro-BNP: if good marker for monitoring of cardiac dysfunction.

Monitor frequently for End organ perfusion (Urine output, Acidosis, Skin condition, body temp, CNS status).
- Can use digoxin 5mcg/kg/dose if only persistent tachycardia (age-specific heart rate), urine output>1mg/kg/hour and K>3.5mmol/L. Stop immediately if heart rate<120 K<3 and Acute Kidney Injury.

While weaning off ventilator check cardiac indicators (HR, Pulse, Perfusion). If stable on VO2>60-65, switch to oral medication:
- Carvedilol (0.25mg/kg/day Q17 hourly). Increase as tolerated according to SBP.
- ACF inhibitors (0.1mg/kg/dose Q18 hourly)
- Aspirin (3.5mg/kg/day 2 days)
- Oral Furosemide.
- Oral Spironolactone.

Therapeutic Measures:
- If duration of symptoms<1 month, administer IVIG 2gm/kg IV one dose can repeat if needed.

PPV: Positive pressure ventilation. CVS: Cardiovascular system. CVL: Central venous line. CNS: Central nervous system.)
remains supportive symptom-based care (Figure-3). Most of the children will recover fully without any long-term sequelae. General principles of supportive treatment in acute phase include reduction of high ventricular preload, reduction of ventricular afterload, improving myocardial contractility and optimisation of tissue oxygen delivery (Figure-4).

Symptom-based Care Therapy

Children presenting with signs and symptoms of CHF should be aggressively managed with administration of inotropic support, afterload reduction and diuresis. In acute or decompensated heart failure, diuretics are frequently administered as removal of excess fluid from the body helps to improve cardiac function. However, diuretics should be administered with care as too rapid a removal of fluid may lead to hypovolaemia and hypotension. Fluid resuscitation should also be done with caution, especially in undiagnosed myocarditis patients presenting as septic shock where aggressive fluid resuscitation may be detrimental.

For more severe disease, an inotropic agent, such as dobutamine or dopamine, can be added, especially if cardiac output is inadequate and cardiac function is depressed on ECG. They should be administered with caution due to risk of arrhythmias. Dobutamine improves contractility and decreases afterload, while dopamine has both inotropic and vasopressor properties and is useful in patients with cardiogenic shock with hypotension. Fluid resuscitation should also be done with caution, especially in undiagnosed myocarditis patients presenting as septic shock where aggressive fluid resuscitation may be detrimental.

Positive pressure ventilation (PPV) can be employed in cases of ventricular dysfunction as it can eliminate work of breathing, and can lead to decrease in LV wall tension and, thus, afterload reduction. In case of failure of medical treatment, mechanical assistance devices with ECMO, and transthoracic placement of a left or biventricular assist device (LVAD/BVAD) may also be used given the overall prognosis for recovery. However, cardiac transplantation is the last resort in cases of end-stage DCM.

Mechanism Specific Interventions

Many studies have been done to evaluate the efficacy of adjuvant therapeutic interventions, specifically intravenous immunoglobulins (IVIG) to reduce long-term cardiac complications. While some of the studies both in developing and the developed world have especially carvedilol, are well known to improve survival in adult patients with CHF, a 2009 Cochrane review on efficacy of beta blockers in children with CHF failed to demonstrate statistically significant benefit of beta blockers. Moreover, a recent randomised control trial carried out by Shaddy et al failed to show any significant benefit of carvedilol in children with heart failure. However, the study suggested, this can be secondary to parents and physician’s false perception of normal developmental milestones (starting to walk) as indicators of cardiovascular status.

L-carnitine is employed in treatment of myocarditis as it is known to prevent apoptosis of muscle cells and plays a role in CHF associated myopathies.

Rhythm disturbances in children with myocarditis are life-threatening and should be aggressively treated. Ventricular ectopy, ventricular tachycardia and heart block may develop in children with myocarditis. Digoxin should be used with extreme care during the acute phase of the disease as high doses lead to increased production of pro-inflammatory cytokines and can precipitate serious dysrhythmias. However, its use is still questionable in cases of DCM and chronic heart failure.

Use of beta blockers in the treatment of myocarditis in children remains controversial. Although beta blockers,
demonstrated statistically significant increase in survival among those children treated with IVIG, a recently conducted multi-institutional analysis on outcome of paediatric myocarditis failed to show any survival benefits of using IVIG.

Apart from immunoglobulin, immunosuppressive therapies are also possible adjuvant to therapeutic modalities in the treatment of myocarditis. Before initiating immunoglobulin therapy, EMB with PCR should be done to rule out any viral load as immunomodulator use in myocarditis with concomitant viral load may lead to detrimental effect. The sole randomised control trial performed by Camargo et al randomised paediatric patients with biopsy-proven viral myocarditis into three groups: prednisone only; or prednisone and azathioprine; or prednisone, azathioprine and cyclosporine. The study concluded that combination immunosuppressive therapy leads to improvement in cardiac outcome. Aziz et al researched the role of prednisone at 3 months of onset of viral myocarditis and concluded that it is beneficial and causes significant improvement in persistent LVF. Another meta-analysis done by Hia et al to assess the benefits of immunosuppressive therapy in the management of viral myocarditis showed that the odds of improved outcome were more among patients treated with immunosuppressive therapy. However, the results were not statistically significant. The current prevailing consensus regarding immunosuppressive therapy is that it does impart a survival advantage, although there is need of further evaluation.

Prognosis and Outcome

Even though true incidence of myocarditis in children cannot be known owing to sub-clinical presentations, some studies estimate it to be around 1 per 100,000. The incidence of myocarditis in developing countries is seen more in the winter months owing to increase in upper respiratory tract infections (URIs). The survival rate is more than 80% in the first year, but 25%-50% of the cases may develop DCM and chronic heart failure. Out of children who develop DCM, the 1-year and 5-year rates of death and heart transplantation are 31% and 46% respectively. It has also been seen that the patients who survive the first 72 hours without requiring ECMO have a survival rate of 97%. Viral persistence in the myocardium, ejection fraction less than 30% and moderate to severe mitral regurgitation have been associated with adverse outcome. Hence, early administration of IVIGs may help in the reduction of long-term complications by decreasing the viral load. However, further studies are required to evaluate its role.

Conclusion

Myocarditis is a challenging diagnosis to make on clinical grounds owing to the wide array of clinical presentation, and requires high index of suspicion. Generally, medical practitioners become suspicious of myocarditis when there is tachycardia in an otherwise healthy child without a clearly defined cause. The main cornerstone of treatment remains supportive although therapeutic modalities such as immunosuppressive therapy and IVIGs are being extensively studied. With the advent of newer diagnostic and therapeutic modalities and improved therapy for heart failure, including mechanical cardiovascular support, the overall prognosis of the disease is getting better with 80% survival rates.

References

17. Gupta D, Garg G, Tomar CRPS. Myocarditis in Children. The

