COVID-19: Management
Talha Mahmud,1 Mosavir Ansarie2

Abstract
Coronavirus disease (COVID-19) has grasped the world including Pakistan. Clinical features of this disease are variable, ranging from asymptomatic to critical disease. In this unprecedented global war, the Pakistan Chest Society has written a guideline for quick review for the specialists providing care to suspected or confirmed patients. This review highlights the approach to a patient with COVID-19, including definition of the various syndromes of the disease, the abnormal laboratory parameters and outlines the therapeutic measures which are currently under investigation.

Keywords: COVID-19, Acute respiratory distress syndrome, Pneumonia, SARS-CoV-2.
DOI: https://doi.org/10.5455/JPMA.13

Introduction
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in December 2019 as the cause of a cluster of pneumonia cases in Wuhan, China, that was declared later a pandemic by the World Health Organization (WHO) in March 2020.1 Clinical features (Table-1) of the illness are variable with some patients having asymptomatic infection while the spectrum of symptomatic infection may range from mild to critical disease.1-3 Acute viral pneumonia which may evolve to acute respiratory distress syndrome (ARDS) is potentially a major concern for morbidity and mortality associated with COVID-19 besides other life-threatening complications like arrhythmias, acute cardiac injury, and shock.2 No age is immune for severe illness, however critical disease predominantly occurs in elderly individuals, especially those with underlying medical comorbidities like diabetes mellitus, hypertension, ischaemic heart disease, malignancy, and chronic lung/renal disease.1,2 Beside some of the clinical features associated with severe disease, there are some laboratory parameters of severity, related to disease progression1-3 (Table-2).

Correspondence: Talha Mahmud. Email: drmatalha@hotmail.com

Table 1: Clinical syndromes associated with COVID-19.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild illness</td>
<td>Patients with uncomplicated upper respiratory tract viral infection may have non-specific symptoms such as fever, fatigue, cough (with or without sputum production), anorexia, malaise, muscle pain, sore throat, dyspnoea, nasal congestion, or headache. Rarely, patients may also present with diarrhoea, nausea and vomiting.</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Pneumonia but no signs of severe pneumonia and no need for supplemental oxygen.</td>
</tr>
<tr>
<td>Severe Pneumonia</td>
<td>Fever or suspected respiratory infection, plus one of: respiratory rate > 30 breaths/minute; severe respiratory distress; or SpO2 < 93% on room air.</td>
</tr>
<tr>
<td>ARDS</td>
<td>Onset: within 1 week of a known clinical illness or new or worse respiratory symptoms.</td>
</tr>
<tr>
<td>Oxygenation impairment in adults:</td>
<td></td>
</tr>
<tr>
<td>Mild ARDS</td>
<td>PaO2/FiO2 < 300 mmHg with PEEP or CPAP ≥ 5 cmH2O, or non-ventilated.</td>
</tr>
<tr>
<td>Moderate ARDS</td>
<td>300 mmHg < PaO2/FiO2 < 400 mmHg with PEEP ≥ 5 cmH2O, or non-ventilated.</td>
</tr>
<tr>
<td>Severe ARDS</td>
<td>PaO2/FiO2 < 100 mmHg with PEEP ≥ 5 cmH2O, or non-ventilated.</td>
</tr>
<tr>
<td>Sepsis</td>
<td>Life-threatening organ dysfunction caused by a dysregulated host response to suspected or proven infection.</td>
</tr>
<tr>
<td>Septic shock</td>
<td>Persisting hypotension despite volume resuscitation, requiring vasopressors to maintain MAP ≥ 65 mmHg and serum lactate level ≥ 2 mmol/L.</td>
</tr>
</tbody>
</table>

1Department of Pulmonology, Sheikh Zayed Hospital, FPGMI, Lahore
2Consultant Pulmonologist, Hill Park General Hospital, Karachi, Pakistan

4 If altitude is higher than 1000 m, then correction factor should be calculated as follows: PaO2/FiO2 x barometric pressure/760.
5 The sequential organ failure assessment (SOFA) score ranges from 0 to 24 and includes points related to six organ systems: respiratory (hypoxemia defined by low PaO2/FiO2; coagulation (low platelets); liver (high bilirubin); cardiovascular (hypotension); central nervous system (low level of consciousness defined by Glasgow Coma Scale); and renal (low urine output or high creatinine).
6 ARDS = Acute respiratory distress syndrome; SpO2 = Oxygen saturation; PaO2/FiO2 = ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2); PEEP = Positive end-expiratory pressure; CPAP = Continuous positive airway pressure; MAP = Mean arterial pressure.
Oxygenation Support (non-intubated patient)

- Low flow nasal cannula up to 6 L/minute or non-re-breathing mask up to 10 L/minute
- High flow nasal cannula (HFNC) and non-invasive ventilation (NIV)
- HFNC preferred over NIV, except for acute hypercapnia due to AECOPD or Acute CCF
- Reassess patients on HFNC and NIV every 1 to 2 hours, or sooner if SpO2 <90 or clinical deterioration
- Early intubation may be preferred for decompensating patients

Mechanical Ventilation

Indications:
- Respiratory distress/exhaustion (accessory muscle use; paradoxical abdominal breathing)
- Rapid progression of disease over hours; SpO2 <90% despite maximal oxygen
- Evolving hypercapnia (arterial pH <7.3 with PaCO2 >50)
- Patient requiring >40 L/min HFNC and FiO2 >0.6
- Hemodynamic instability
- Multi organ failure

Rapid Sequence Intubation:
- Avoid bag mask ventilation, performed by experienced operator using in-line bacterial/viral filter

Ventilator Settings:
- Lung protective strategy using low tidal volume ventilation (LTVV):
 - Assist Control Mode, Tidal Volume 6 mL/kg PBW (range 4 to 8 mL/kg PBW)
 - RR 25 to 30; goal 10 to 15 breaths/min; PEEP/FiO2: PEEP 10 to 15 cm H2O (Goal pH >7.15; Plateau pressure <30 cm H2O; PaO2 55 to 80; SpO2 90 to 96%)

Prone Ventilation

Indications:
- Failure of LTVV: PaO2/FiO2 [P/F] ratio<150 mmHg × 12 hours or worsening oxygenation after intubation

Duration:
- 12 to 16 hours/day (effects typically seen over 4 to 8 hours)

Precautions:
- Experienced staff; careful securing tracheal tube and vascular lines

Additional Interventions for Refractory Hypoxaemia

- Recruitment manoeuvres and high PEEP strategies
- Neuromuscular blockade for patients with refractory hypoxemia (e.g., P/F <100 mmHg) or ventilator dysynchrony
- Trial of inhaled pulmonary vasodilators such as nitric oxide/epoprostenol
- Extra Corporeal Membrane Oxygenation (ECMO) as a last resort (if available)

Figure: Respiratory support in patients with COVID-19 (Goal SpO2 90 to 96%).

Precautions: N95 mask, gown, gloves, eye protection; disposable stethoscope; negative pressure room for aerosol-generating procedures

AECOPD = acute exacerbation of chronic obstructive pulmonary disease; CCF = Congestive cardiac failure; SpO2 = oxygen saturation; PaCO2 = partial pressure of carbon dioxide; PaO2/FiO2 = ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2); PEEP = Positive end-expiratory pressure;
Approach to a Patient with COVID-19

The first step in the management of COVID-19 is to define the severity of disease (Tables 1 and 2). Subjects with non-severe disease do not require hospitalisation and can be managed at home/hospital or non-hospital based isolation facility using supportive care only (e.g. acetaminophen for pyrexia), close monitoring for clinical worsening and strict isolation precautions. The onset of dyspnoea may raise concern for underlying pneumonia (moderate severity disease), and these patients often warrant hospitalisation. Patients with infiltrates on chest imaging but not requiring oxygen inhalation can still be considered to have moderate disease. The presence of any of the following features indicates severe disease: hypoxia (oxygen saturation (SpO₂) ≤93 percent on room air, or ratio of arterial oxygen partial pressure (PaO₂ in mmHg) to fractional inspired oxygen (FiO₂) (PaO₂/FiO₂) <300 mmHg),

Table-2: Laboratory features associated with severe COVID-19.

<table>
<thead>
<tr>
<th>Abnormal Laboratory Parameter</th>
<th>Possible threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphopenia: Absolute lymphocyte count</td>
<td><800/micro L (normal range for age ≥21 years: 1800 to 7700/micro L)</td>
</tr>
<tr>
<td>D-dimer</td>
<td>>1000 n g /m L (normal range: <300 n g/m L)</td>
</tr>
<tr>
<td>CRP</td>
<td>>100 mg/L (normal range: <8.0 mg/L)</td>
</tr>
<tr>
<td>LDH</td>
<td>>245 units/L (normal range: 110 to 210 units/L)</td>
</tr>
<tr>
<td>CPK</td>
<td>>2× the upper limit of normal (normal range for troponin T high sensitivity: females 0 to 9 n g/L; males 0 to 14 n g/L)</td>
</tr>
<tr>
<td>Ferritin</td>
<td>>500 mcg/L (normal range: females 10 to 200 mcg/L; males 30 to 300 mcg/L)</td>
</tr>
<tr>
<td>Troponin</td>
<td>>2× the upper limit of normal (normal range: 40 to 150 units/L)</td>
</tr>
</tbody>
</table>

Table-3: Therapeutic management of severe COVID-19.

<table>
<thead>
<tr>
<th>Drug/agent</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine</td>
<td>Emergency use authorization by FDA Can prolong the QT interval (should be monitored) Dose: Oral: 400 mg twice daily on day 1, followed by 400 mg/day as a single dose or in 2 divided doses, for a total treatment duration of 5 days or 800 mg once on day 1, followed by 400 mg/day as a single dose or in 2 divided doses, for a total treatment duration of 4 to 7 days</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Emergency use authorization by FDA Can prolong the QT interval (should be monitored) Dose: >50 kg: Oral: 1 g (600 mg base) once on day 1 followed by 500 mg (300 mg base) once daily for a total treatment duration of 4 to 7 days (FDA 2020)</td>
</tr>
<tr>
<td>Azithromycin with hydroxychloroquine</td>
<td>Azithromycin 500 mg on day 1 plus 250 mg daily on days 2-5 (may be administered intravenously per clinician preference) ClinicalTrials.gov Identifier: NCT04329572 Both azithromycin and hydroxychloroquine are associated with QTc prolongation, and combined use may potentiate this adverse effect</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>Novel nucleotide analogue, parenteral agent Activity against SARS-CoV-2 in vitro and in animal studies 200 mg as a single dose on day 1, followed by 100 mg once daily for a total duration of 5 to 10 days (Gilead 2020; NIH 2020a; NIH 2020b; NIH 2020c)</td>
</tr>
<tr>
<td>Convalescent plasma</td>
<td>Emergency use authorization by FDA Logistical challenges in finding appropriate donors and establishing testing to confirm neutralizing activity of plasma</td>
</tr>
<tr>
<td>Hyperimmune globulin</td>
<td>FDA emergency approval facilitating the therapeutic evaluation</td>
</tr>
<tr>
<td>IL-6 pathway inhibitors</td>
<td>China’s National Health Commission guidelines include tocilizumab for severe COVID-19 associated with raised IL-6 levels</td>
</tr>
<tr>
<td>Lopinavir-ritonavir</td>
<td>Anti-HIV drug Demonstrated in vitro activity against the SARS-CoV No clear benefit of use in COVID-19 Dose: (400/100 mg) twice daily for 14 days Still under evaluation</td>
</tr>
<tr>
<td>Combination remdesivir, hydroxychloroquine/chloroquine, and lopinavir-ritonavir with and without interferon beta</td>
<td>Under trial by WHO (SOLIDARITY 2020)</td>
</tr>
</tbody>
</table>

FDA = Food and Drug Administration; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; IL-6 = Interleukin 6.
respiratory rate >30/minute or respiratory distress and/or more than 50 percent involvement of the lung parenchyma on chest imaging. Patients having laboratory abnormalities (Table-2) associated with disease progression should also be categorised similar to patients who have severe disease.1,2

Management of Severe COVID-19

Standard therapy (Table-3) for COVID-19 is unknown in hospitalised patients with severe or critical disease. According to the available data of those infected with SARS-CoV-2, up to 20 percent develop severe disease requiring hospitalisation with up to one-quarter requiring ICU admission (5-8% of total infected).2 There are no well-controlled data supporting the use of any of the potential agents currently in use/under trials for managing severe COVID-19 disease.6 For patients hospitalised with suspected or confirmed severe/life-threatening COVID-19 or those with laboratory risk factors for disease progression, agents currently recommended by experts include chloroquine or hydroxychloroquine with or without azithromycin, remdesivir, convalescent plasma (FDA’s investigational new drug application), or other agents.7,8 Interleukin-6 (IL-6) inhibitors (tocilizumab, sarilumab and siltuximab) improve outcomes in some of COVID-19 patients with life-threatening disease having features consistent with a cytokine release syndrome (elevated IL-6 levels, persistent pyrexia, and elevated CRP, procalcitonin, ferritin, and D-dimer levels).9

Supportive therapy includes but is not limited to management of hypoxaemia (Figure), placement of central venous line, arterial line if frequent ABGs monitoring anticipated for ventilated patients with ARDS, conservative use of IV fluids (>30 mL/kg) unless patients have sepsis or volume depletion from gastrointestinal losses or high fever, vasopressors (e.g., dopamine), antipyretics (acetaminophen is preferred over NSAIDs), and nutritional support. Nebulizer treatment is best avoided unless in isolation room for some patients with asthma or chronic obstructive pulmonary disease (COPD) exacerbation (risk of airborne infection caused by aerosol generation) where inhalers are preferred.1,3,10 Empiric antibiotics (community-acquired or healthcare-associated pneumonia coverage) should be used only for suspected bacterial co-infection.3 Systemic glucocorticoids are generally not advised for COVID-19 infection, unless needed for other indication (e.g., adrenal insufficiency, asthma, COPD).11

Differentiating COVID-19 from similar respiratory illnesses is important as the approach to management varies according to the underlying diagnosis. Patients with COVID-19 having mild upper respiratory symptoms cannot be differentiated from similar respiratory disease caused by common cold viruses like rhinovirus, adenovirus, enterovirus and other coronaviruses etc.4 Viruses with marked seasonal variation, such as influenza and parainfluenza, typically cause more systemic symptoms than other cold viruses; however, they can rarely also cause illnesses similar to the common cold and are also among the differential diagnosis of mild COVID-19.1 However patients with COVID-19 typically have high grade fever (99%) while rhinorrhea, sore throat and headache may be less prominent as compared to patients with influenza.4 Without considering specific laboratory testing (polymerase chain reaction, serology if needed), it is difficult to differentiate mild COVID-19 from these illnesses.

Patients with chronic respiratory diseases like allergic rhinitis, chronic bronchitis and bronchial asthma have history of long standing symptoms which may be associated with seasonal variations. If these patients develop COVID-19 infection, they may notice worsening of their respiratory symptoms but again require microbiological testing for confirmation of diagnosis.

In early or mild COVID-19 pneumonia, chest radiograph may be normal and pulmonary involvement is typically increased over the course of illness (bilateral consolidations).4 Chest CT may be more sensitive than chest radiograph (just like any non-COVID-19 pneumonia) and some chest CT findings may be characteristic of COVID-19.1,4 Chest CT in patients with COVID-19 most commonly demonstrates ground-glass opacification with or without consolidative abnormalities having bilateral and peripheral distribution, and involve the lower lobes consistent with any viral (e.g. influenza) pneumonia.1,3 COVID-19 pneumonia is again difficult to differentiate radiologically from community acquired pneumonia (CAP) especially if it is bilateral and caused by typical and atypical CAP organisms.

ARDS caused by severe COVID-19 exhibits similar radiological features like ARDS due to other aetiologies, however certain physiological features may be different in patients with COVID-19-associated ARDS.2 Studies have floated the notion that in the early phase of COVID-19, severe hypoxaemia may be associated with high lung compliance and low alveolar recruitability (atypical ARDS), while in the later phase, severe hypoxaemia is
associated with low lung compliance and high recruitability (classic ARDS). Refractory hypoxaemia in these patients can be managed with good response to prone positioning that may also be due to preserved lung compliance compared with patients who develop ARDS due to other causes.1,4,12

References